
SAE - TP1
Structures de contrôle en Assembleur 32 bits

Votre Nom

Version 1.0

Introduction
Ce TP a pour objectif de vous familiariser avec les structures de contrôle en assembleur GNU 32 bits

(if/else, boucles, switch). Vous travaillerez uniquement avec les registres et la mémoire, sans utiliser de fonctions
ni d’appels systèmes complexes.

Utilisation de SASM
Vous utiliserez le logiciel SASM (Simple ASM) pour tester vos programmes. SASM est un IDE qui vous

permet de :
— Écrire et compiler votre code assembleur
— Placer des breakpoints (points d’arrêt) en cliquant sur la marge gauche
— Exécuter le code pas à pas (Step Over / Step Into)
— Observer en temps réel les valeurs des registres (%eax, %ebx, %ecx, etc.)
— Inspecter le contenu de la mémoire

Méthode de travail recommandée :
1. Écrivez votre code dans SASM
2. Placez un breakpoint au début de la boucle ou après un calcul important
3. Lancez le programme en mode débogage (F5)
4. Avancez pas à pas (F10) et observez les registres
5. Vérifiez que les valeurs correspondent à vos attentes

Configuration SASM :
— Mode : GAS (GNU Assembler)
— Architecture : x86 (32 bits)
— Build : gcc -m32 -no-pie
Important : Dans chaque exercice, des commentaires indiquent quels registres observer et à quel moment.

Utilisez les breakpoints pour vérifier vos résultats à chaque étape !

Exercice 1 : Les conditions (if/else)

1.1 Maximum de deux nombres
Écrire un programme qui compare deux nombres stockés en mémoire (x et y) et place le maximum dans le

registre %eax.
Données :

.data
x: .int 15
y: .int 23

Résultat attendu : %eax doit contenir 23

1

Test avec SASM :
— Placez un breakpoint sur la ligne cmpl
— Observez : %eax = 15 et %ebx = 23
— Après le saut, vérifiez que %eax = 23 (le maximum)

Solution :

.data
x: .int 15
y: .int 23

.text

.global main
main:

movl %esp, %ebp # for correct debugging

movl x, %eax # charger x dans eax
movl y, %ebx # charger y dans ebx
BREAKPOINT ICI : observer eax=15, ebx=23

cmpl %ebx, %eax # comparer eax et ebx
jge fin # si eax >= ebx, aller à fin

movl %ebx, %eax # sinon, mettre ebx dans eax

fin:
BREAKPOINT ICI : observer eax=23 (le maximum)
ret

1.2 Valeur absolue
Écrire un programme qui calcule la valeur absolue d’un nombre signé stocké dans la variable nombre.
Données :

.data
nombre: .int -42

Résultat attendu : %eax doit contenir 42

Solution :

.data
nombre: .int -42

.text

.global main
main:

movl %esp, %ebp

movl nombre, %eax # charger le nombre

cmpl $0, %eax # comparer avec 0
jge positif # si >= 0, c'est déjà positif

negl %eax # sinon, inverser le signe

positif:
ret

2

1.3 Nombre pair ou impair
Écrire un programme qui teste si un nombre est pair ou impair. Le résultat doit être :
— 0 dans %eax si le nombre est pair
— 1 dans %eax si le nombre est impair
Astuce : Utilisez l’instruction andl pour tester le bit de poids faible.

Solution :

.data
nombre: .int 17

.text

.global main
main:

movl %esp, %ebp

movl nombre, %eax
andl $1, %eax # garder seulement le bit de poids faible

si 0 -> pair, si 1 -> impair
ret

1.4 Maximum de trois nombres
Écrire un programme qui trouve le maximum de trois nombres stockés dans a, b et c.
Données :

.data
a: .int 45
b: .int 78
c: .int 23

Solution :

.data
a: .int 45
b: .int 78
c: .int 23

.text

.global main
main:

movl %esp, %ebp

Comparer a et b
movl a, %eax
movl b, %ebx
cmpl %ebx, %eax
jge comp_c # si a >= b, comparer avec c
movl %ebx, %eax # sinon, eax = b

comp_c:
Maintenant eax contient max(a,b)
movl c, %ecx
cmpl %ecx, %eax
jge fin # si max(a,b) >= c, terminé
movl %ecx, %eax # sinon, eax = c

fin:
ret

3

Exercice 2 : Les boucles

2.1 Somme de 1 à N
Écrire un programme qui calcule la somme de 1 à N (N=10). Le résultat doit être dans %eax.
Formule : 1 + 2 + 3 + ...+ 10 = 55

Test avec SASM :
— Placez un breakpoint dans la boucle (ligne addl)
— Avancez pas à pas et observez :

— Itération 1 : %eax = 1, %ecx = 1
— Itération 2 : %eax = 3, %ecx = 2
— Itération 3 : %eax = 6, %ecx = 3
— ...
— Itération 10 : %eax = 55, %ecx = 10

Solution :

.data
n: .int 10

.text

.global main
main:

movl %esp, %ebp

xorl %eax, %eax # eax = 0 (somme)
movl $1, %ecx # ecx = 1 (compteur)
movl n, %edx # edx = n

boucle:
cmpl %edx, %ecx # comparer compteur avec n
jg fin_boucle # si compteur > n, sortir

BREAKPOINT ICI : observer eax (somme) et ecx (compteur)
addl %ecx, %eax # somme += compteur
incl %ecx # compteur++
jmp boucle

fin_boucle:
BREAKPOINT ICI : observer eax=55
ret

2.2 Factorielle
Écrire un programme qui calcule la factorielle de N (N=5).
Rappel : 5! = 5× 4× 3× 2× 1 = 120

Solution :

.data
n: .int 5

.text

.global main
main:

movl %esp, %ebp

movl n, %ecx # ecx = n (compteur)
movl $1, %eax # eax = 1 (résultat)

4

boucle:
cmpl $1, %ecx # si compteur <= 1, terminer
jle fin_boucle

imull %ecx, %eax # résultat *= compteur
decl %ecx # compteur--
jmp boucle

fin_boucle:
ret # eax = 120

2.3 Puissance
Écrire un programme qui calcule baseexposant (exemple : 28 = 256).
Données :

.data
base: .int 2
exposant: .int 8

Solution :

.data
base: .int 2
exposant: .int 8

.text

.global main
main:

movl %esp, %ebp

movl exposant, %ecx # ecx = exposant (compteur)
movl $1, %eax # eax = 1 (résultat)
movl base, %ebx # ebx = base

cmpl $0, %ecx # cas spécial : exposant = 0
je fin_boucle # résultat = 1

boucle:
cmpl $0, %ecx
jle fin_boucle

imull %ebx, %eax # résultat *= base
decl %ecx
jmp boucle

fin_boucle:
ret # eax = 256

2.4 Compter les multiples
Écrire un programme qui compte combien de multiples de 3 existent entre 1 et 30.
Résultat attendu : 10 (les multiples sont : 3, 6, 9, 12, 15, 18, 21, 24, 27, 30)

Solution :

.data
limite: .int 30
diviseur: .int 3

5

.text

.global main
main:

movl %esp, %ebp

xorl %eax, %eax # eax = 0 (compteur de multiples)
movl $1, %ecx # ecx = 1 (nombre à tester)
movl limite, %edi # edi = limite

boucle:
cmpl %edi, %ecx # comparer avec la limite
jg fin_boucle

Tester si ecx est multiple de diviseur
movl %ecx, %ebx # sauvegarder ecx
xorl %edx, %edx # préparer pour division
movl %ecx, %eax
divl diviseur # eax = ecx / diviseur, edx = reste

cmpl $0, %edx # si reste = 0, c'est un multiple
jne pas_multiple

movl %ebx, %eax # restaurer le compteur de multiples
incl %eax # incrémenter
jmp suite

pas_multiple:
movl %ebx, %eax # restaurer le compteur

suite:
movl %ebx, %ecx # restaurer ecx
incl %ecx # prochain nombre
jmp boucle

fin_boucle:
Note: cette solution est complexe, voici une version simplifiée
ret

Solution simplifiée :

.text

.global main
main:

movl %esp, %ebp

xorl %eax, %eax # compteur de multiples
movl $3, %ecx # commencer à 3

boucle:
cmpl $30, %ecx
jg fin_boucle

incl %eax # c'est un multiple de 3
addl $3, %ecx # passer au prochain multiple
jmp boucle

fin_boucle:
ret # eax = 10

6

2.5 PGCD (Plus Grand Commun Diviseur)
Écrire un programme qui calcule le PGCD de deux nombres en utilisant l’algorithme d’Euclide.
Données :

.data
a: .int 48
b: .int 18

Algorithme :

Tant que b != 0 :
temp = b
b = a mod b
a = temp

PGCD = a

Résultat attendu : 6

Solution :

.data
a: .int 48
b: .int 18

.bss
temp: .lcomm 4

.text

.global main
main:

movl %esp, %ebp

movl a, %ebx # ebx = a
movl b, %ecx # ecx = b

boucle:
cmpl $0, %ecx # si b = 0, terminé
je fin_boucle

Calculer a mod b
xorl %edx, %edx # edx = 0
movl %ebx, %eax # eax = a
divl %ecx # eax = a/b, edx = a mod b

temp = b, b = a mod b, a = temp
movl %ecx, %ebx # a = b
movl %edx, %ecx # b = reste

jmp boucle

fin_boucle:
movl %ebx, %eax # résultat dans eax
ret # eax = 6

Exercice 3 : Les switch/case
En assembleur, un switch/case peut être implémenté de deux manières :
— Par des comparaisons successives (if/else if)
— Par une table de sauts (plus efficace pour de nombreux cas)

7

3.1 Jours de la semaine
Écrire un programme qui, étant donné un numéro de jour (1 à 7), retourne un code :
— 1-5 (lundi à vendredi) : retourner 1 (jour de travail)
— 6-7 (samedi, dimanche) : retourner 0 (weekend)
— Autre : retourner -1 (invalide)
Données :

.data
jour: .int 3 # Mercredi

Solution :

.data
jour: .int 3

.text

.global main
main:

movl %esp, %ebp

movl jour, %eax

Vérifier si jour valide (1-7)
cmpl $1, %eax
jl invalide
cmpl $7, %eax
jg invalide

Vérifier si weekend (6 ou 7)
cmpl $6, %eax
jge weekend

Sinon c'est un jour de travail
movl $1, %eax
jmp fin

weekend:
movl $0, %eax
jmp fin

invalide:
movl $-1, %eax

fin:
ret

3.2 Calculatrice simple
Écrire un programme qui effectue une opération selon un code opération :
— 1 : addition
— 2 : soustraction
— 3 : multiplication
— Autre : retourner 0
Données :

.data
operation: .int 3 # multiplication
operande1: .int 7
operande2: .int 6

8

Solution :

.data
operation: .int 3
operande1: .int 7
operande2: .int 6

.text

.global main
main:

movl %esp, %ebp

movl operation, %ecx
movl operande1, %eax
movl operande2, %ebx

cmpl $1, %ecx
je addition
cmpl $2, %ecx
je soustraction
cmpl $3, %ecx
je multiplication

Opération invalide
xorl %eax, %eax
jmp fin

addition:
addl %ebx, %eax
jmp fin

soustraction:
subl %ebx, %eax
jmp fin

multiplication:
imull %ebx, %eax
jmp fin

fin:
ret # eax = 42 (7 * 6)

3.3 Table de sauts
Réécrire la calculatrice précédente en utilisant une table de sauts.

Solution :

.data
operation: .int 2 # soustraction
operande1: .int 15
operande2: .int 8

Table de sauts
jump_table:

.long operation_invalide # cas 0

.long addition # cas 1

.long soustraction # cas 2

.long multiplication # cas 3

9

.text

.global main
main:

movl %esp, %ebp

movl operation, %ecx
movl operande1, %eax
movl operande2, %ebx

Vérifier si opération valide (1-3)
cmpl $1, %ecx
jl operation_invalide
cmpl $3, %ecx
jg operation_invalide

Utiliser la table de sauts
jmp *jump_table(,%ecx,4) # sauter à l'adresse jump_table[ecx]

addition:
addl %ebx, %eax
jmp fin

soustraction:
subl %ebx, %eax
jmp fin

multiplication:
imull %ebx, %eax
jmp fin

operation_invalide:
xorl %eax, %eax

fin:
ret # eax = 7 (15 - 8)

Exercice 4 : Exercices de synthèse

4.1 Somme des nombres pairs
Écrire un programme qui calcule la somme de tous les nombres pairs de 1 à N.
Données :

.data
n: .int 20

Résultat attendu : 2+4+6+8+10+12+14+16+18+20 = 110

4.2 Nombre de chiffres
Écrire un programme qui compte le nombre de chiffres dans un nombre.
Exemple : 12345 a 5 chiffres
Données :

.data
nombre: .int 12345

Astuce : Diviser successivement par 10 jusqu’à ce que le nombre soit 0.

10

4.3 Somme des chiffres
Écrire un programme qui calcule la somme des chiffres d’un nombre.
Exemple : 1234 → 1+2+3+4 = 10
Données :

.data
nombre: .int 1234

Solution :

.data
nombre: .int 1234
dix: .int 10

.text

.global main
main:

movl %esp, %ebp

movl nombre, %ebx # nombre à traiter
xorl %edi, %edi # somme = 0

boucle:
cmpl $0, %ebx # si nombre = 0, terminé
je fin_boucle

Extraire le dernier chiffre
xorl %edx, %edx
movl %ebx, %eax
divl dix # eax = nombre/10, edx = nombre%10

addl %edx, %edi # ajouter le chiffre à la somme
movl %eax, %ebx # nombre = nombre/10

jmp boucle

fin_boucle:
movl %edi, %eax # résultat dans eax
ret # eax = 10

4.4 Inverser un nombre
Écrire un programme qui inverse les chiffres d’un nombre.
Exemple : 1234 → 4321
Données :

.data
nombre: .int 1234

Solution :

.data
nombre: .int 1234
dix: .int 10

.text

.global main
main:

movl %esp, %ebp

11

movl nombre, %ebx # nombre à inverser
xorl %edi, %edi # résultat = 0

boucle:
cmpl $0, %ebx # si nombre = 0, terminé
je fin_boucle

Extraire le dernier chiffre
xorl %edx, %edx
movl %ebx, %eax
divl dix # eax = nombre/10, edx = chiffre

Ajouter le chiffre au résultat
imull dix, %edi # résultat *= 10
addl %edx, %edi # résultat += chiffre

movl %eax, %ebx # nombre = nombre/10
jmp boucle

fin_boucle:
movl %edi, %eax # résultat dans eax
ret # eax = 4321

4.5 Nombre de bits à 1
Écrire un programme qui compte le nombre de bits à 1 dans un nombre.
Exemple : 13 = 0b1101 → 3 bits à 1
Données :

.data
nombre: .int 13

Astuce : Utiliser un décalage à droite et tester le bit de poids faible.

Solution :

.data
nombre: .int 13

.text

.global main
main:

movl %esp, %ebp

movl nombre, %ebx # nombre à traiter
xorl %ecx, %ecx # compteur = 0

boucle:
cmpl $0, %ebx # si nombre = 0, terminé
je fin_boucle

Tester le bit de poids faible
movl %ebx, %eax
andl $1, %eax # isoler le bit de poids faible
addl %eax, %ecx # ajouter au compteur

shrl $1, %ebx # décalage à droite de 1 bit
jmp boucle

fin_boucle:
movl %ecx, %eax # résultat dans eax

12

ret # eax = 3

Exercice 5 : Défis

5.1 Nombre parfait
Un nombre parfait est un nombre égal à la somme de ses diviseurs (excluant lui-même). Exemple : 6 = 1 +

2 + 3
Écrire un programme qui teste si un nombre est parfait. Retourner 1 si oui, 0 si non.

5.2 Suite de Fibonacci
Écrire un programme qui calcule le n-ième terme de la suite de Fibonacci.
Rappel : F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2)
Exemple : F(8) = 21

Solution :

.data
n: .int 8

.text

.global main
main:

movl %esp, %ebp

movl n, %ecx # ecx = n

Cas de base
cmpl $0, %ecx
je cas_zero
cmpl $1, %ecx
je cas_un

Calculer Fibonacci
movl $0, %ebx # F(n-2) = 0
movl $1, %eax # F(n-1) = 1
movl $2, %edi # compteur = 2

boucle:
cmpl %ecx, %edi # si compteur > n, terminé
jg fin_boucle

movl %eax, %edx # sauvegarder F(n-1)
addl %ebx, %eax # F(n) = F(n-1) + F(n-2)
movl %edx, %ebx # F(n-2) = ancien F(n-1)

incl %edi
jmp boucle

cas_zero:
xorl %eax, %eax
jmp fin

cas_un:
movl $1, %eax
jmp fin

fin_boucle:

13

fin:
ret # eax = 21

5.3 Conversion binaire vers décimal
Écrire un programme qui convertit un nombre stocké comme une suite de bits (0 et 1) en décimal.
Exemple : Si on stocke les bits 1, 0, 1, 1 (représentant 0b1011), le résultat doit être 11.

14

