SAFE - TP1

Structures de controle en Assembleur 32 bits

Votre Nom

Version 1.0

Introduction

Ce TP a pour objectif de vous familiariser avec les structures de contréle en assembleur GNU 32 bits
(if /else, boucles, switch). Vous travaillerez uniquement avec les registres et la mémoire, sans utiliser de fonctions
ni d’appels systémes complexes.

Utilisation de SASM

Vous utiliserez le logiciel SASM (Simple ASM) pour tester vos programmes. SASM est un IDE qui vous
permet de :

— Ecrire et compiler votre code assembleur

— Placer des breakpoints (points d’arrét) en cliquant sur la marge gauche

— Exécuter le code pas a pas (Step Over / Step Into)

— Observer en temps réel les valeurs des registres (%eax, %ebx, %ecx, etc.)

— Inspecter le contenu de la mémoire

Méthode de travail recommandée :

1. Ecrivez votre code dans SASM
Placez un breakpoint au début de la boucle ou aprés un calcul important
Lancez le programme en mode débogage (F5)

Avancez pas a pas (F10) et observez les registres

Rl B

Vérifiez que les valeurs correspondent a vos attentes

Configuration SASM :

— Mode : GAS (GNU Assembler)

— Architecture : x86 (32 bits)

— Build : gcc -m32 -no-pie

Important : Dans chaque exercice, des commentaires indiquent quels registres observer et & quel moment.
Utilisez les breakpoints pour vérifier vos résultats a chaque étape!

Exercice 1 : Les conditions (if/else)

1.1 Maximum de deux nombres

Ecrire un programme qui compare deux nombres stockés en mémoire (x et y) et place le maximum dans le
registre %eax.

Données :
.data
X: .int 15
y: .int 23

Résultat attendu : %eax doit contenir 23

Test avec SASM :
— Placez un breakpoint sur la ligne cmpl
— Observez : %eax = 15 et %ebx = 23
— Aprés le saut, vérifiez que %eax = 23 (le maximum)

Solution :

.data
x: .int 15
y: .int 23

.text
.global main
main:
movl %esp, %ebp # for correct debugging

movl x, %eax # charger x dans eazx
movl y, %ebx # charger y dans ebz
BREAKPOINT ICI : observer eaxz=15, ebxr=23

cmpl Y%ebx, %eax # comparer ear et ebzx
jge fin # si eaxr >= ebz, aller a fin
movl %ebx, %eax # sinon, mettre ebx dans eax

fin:
BREAKPOINT ICI : observer eaz=23 (le mazimum)
ret

1.2 Valeur absolue

Ecrire un programme qui calcule la valeur absolue d’un nombre signé stocké dans la variable nombre.

Données :
.data
nombre: .int -42

Résultat attendu : %eax doit contenir 42

Solution :

.data
nombre: .int -42

.text
.global main
main:
movl %esp, %ebp

movl nombre, %eax # charger le mombre

cmpl $0, %eax # comparer avec 0

jge positif # st >= 0, c'est déja positif

negl Jeax # sinon, inverser le signe
positif:

ret

1.3 Nombre pair ou impair

Ecrire un programme qui teste si un nombre est pair ou impair. Le résultat doit étre :
— 0 dans %eax si le nombre est pair

— 1 dans %eax si le nombre est impair

Astuce : Utilisez I'instruction andl pour tester le bit de poids faible.

Solution :

.data
nombre: .int 17

.text
.global main
main:
movl %esp, %ebp

movl nombre, %eax

andl $1, %eax # garder seulement le bit de poids faible
si1 0 -> pair, st 1 -> impasir

ret

1.4 Maximum de trois nombres

Ecrire un programme qui trouve le maximum de trois nombres stockés dans a, b et c.
Données :

.data
a: .int 45

: .int 78
c: .int 23

Solution :

.data
a: .int 45

: .int 78
c: .int 23

.text
.global main
main:

movl %esp, %ebp

Comparer a et b

movl a, %eax

movl b, %ebx

cmpl %ebx, %eax

jge comp_c # st a >= b, comparer avec c
movl %ebx, %eax # sinon, eaxr = b

comp_c:
Maintenant eax contient maz(a,b)
movl c, %ecx
cmpl Yecx, heax
jge fin # st maz(a,b) >= c, terminé
movl %ecx, %heax # sinon, eax = c

fin:
ret

Exercice 2 : Les boucles

2.1 Somme de 1 a N

Ecrire un programme qui calcule la somme de 1 4 N (N=10). Le résultat doit étre dans %eax.
Formule : 1 +2+4+3+...4+10=55

Test avec SASM :
— Placez un breakpoint dans la boucle (ligne addl)
— Avancez pas a pas et observez :

— Itération 1 : %eax = 1, %ecx = 1
— Itération 2 : Yeax = 3, %ecx = 2
— Itération 3 : Jeax = 6, %ecx = 3

— Itération 10 : jeax = 55, jecx = 10

Solution :

.data
n: .int 10

.text
.global main
main:
movl %esp, %ebp

xorl Yeax, %eax # eax = 0 (somme)
movl $1, Yecx # ecz = 1 (compteur)
movl n, %edx # edr = n
boucle:
cmpl %edx, %ecx # comparer compteur avec n
jg fin_boucle # si compteur > m, sortir

BREAKPOINT ICI : observer eaxz (somme) et ecx (compteur)

addl %ecx, %eax # somme += compteur
incl %ecx # compteur++
jmp boucle

fin_boucle:
BREAKPOINT ICI : observer eax=55
ret

2.2 Factorielle

Ecrire un programme qui calcule la factorielle de N (N=5).
Rappel : 5! =5x4x3x2x1=120

Solution :

.data
n: .int 5

.text
.global main
main:
movl %esp, %ebp

movl n, %ecx # ecx = n (compteur)
movl $1, Y%eax # eax 1 (résultat)

boucle:
cmpl $1, Yecx # si compteur <= 1, terminer
jle fin_boucle

imull %ecx, %eax # résultat *= compteur
decl Yecx # compteur--
jmp boucle

fin_boucle:
ret # eax = 120

2.3 Puissance

Ecrire un programme qui calcule base®*P°%" (exemple : 2% = 256).
Données :

.data
base: .int 2
exposant: .int 8

Solution :

.data
base: .int 2
exposant: .int 8

.text
.global main
main:
movl %esp, %ebp

movl exposant, %hecx # ecx = exposant (compteur)

movl $1, Y%eax # eax = 1 (résultat)
movl base, %ebx # ebx = base
cmpl $0, %ecx # cas spéctial : exposant = 0
je fin_boucle # résultat = 1
boucle:

cmpl $0, %ecx
jle fin_boucle

imull %ebx, %eax # résultat *= base
decl %ecx
jmp boucle

fin_boucle:
ret # eaxr = 256

2.4 Compter les multiples

Ecrire un programme qui compte combien de multiples de 3 existent entre 1 et 30.
Résultat attendu : 10 (les multiples sont : 3, 6, 9, 12, 15, 18, 21, 24, 27, 30)

Solution :

.data

limite: .int 30
diviseur: .int 3

.text
.global main
main:
movl %esp, %ebp

H*

xorl %eax, heax eaz = 0 (compteur de multiples)
movl $1, Y%ecx ect = 1 (nombre a tester)
movl limite, %edi # edi = limite

H*

boucle:
cmpl Yedi, %ecx # comparer avec la limite
jg fin_boucle

Tester st ecx est multiple de diviseur

movl %ecx, %ebx # sauvegarder ecc

xorl Y%edx, %edx # préparer pour division

movl %ecx, %heax

divl diviseur # eax = ecx / diviseur, edx = reste
cmpl $0, %edx # si reste = 0, c'est un multiple

jne pas_multiple

movl %ebx, %eax # restaurer le compteur de multiples
incl Yeax # incrémenter
jmp suite

pas_multiple:

movl %ebx, %eax # restaurer le compteur
suite:

movl %ebx, %hecx # restaurer ecz

incl %ecx # prochain nombre

jmp boucle

fin_boucle:
Note: cette solution est complexze, wvoict une version simplifiée
ret

Solution simplifiée :

.text
.global main
main:
movl %esp, %ebp

xorl Yeax, %heax # compteur de multiples
movl $3, %ecx # commencer a4 3
boucle:

cmpl $30, Yecx
jg fin_boucle

incl %eax # c'est un multiple de 3
addl $3, %ecx # passer au prochain multiple
jmp boucle

fin_boucle:
ret # eax = 10

2.5 PGCD (Plus Grand Commun Diviseur)

Ecrire un programme qui calcule le PGCD de deux nombres en utilisant I’algorithme d’Euclide.

Données :
.data
a: .int 48
b: .int 18

Algorithme :

Tant que b !'= 0 :

temp = b

b =amod b

a = temp
PGCD = a

Résultat attendu : 6

Solution :

.data
a: .int 48
b: .int 18

.bss
temp: .lcomm 4

.text
.global main
main:
movl %esp, %ebp

movl a, %ebx # ebxz = a
movl b, %ecx # ecx = b
boucle:
cmpl $0, %ecx # st b =0, terminé

je fin_boucle

Calculer a mod b

xorl Y%edx, %edx # edz = 0

movl %ebx, %eax # eaz = a

divl Y%ecx # eax = a/b, edz = a mod b
temp = b, b = a mod b, a = temp

movl %ecx, %ebx #a =0>b

movl %edx, %hecx # b = reste

jmp boucle

fin_boucle:
movl %ebx, %eax # résultat dans eazx
ret # eax = 6

Exercice 3 : Les switch/case

En assembleur, un switch/case peut étre implémenté de deux maniéres :
— Par des comparaisons successives (if/else if)
— Par une table de sauts (plus efficace pour de nombreux cas)

3.1 Jours de la semaine

Ecrire un programme qui, étant donné un numéro de jour (1 & 7), retourne un code :
— 1-5 (lundi & vendredi) : retourner 1 (jour de travail)

— 6-7 (samedi, dimanche) : retourner 0 (weekend)

— Autre : retourner -1 (invalide)

Données :

.data
jour: .int 3 # Mercreds

Solution :

.data
jour: .int 3

.text
.global main
main:
movl %esp, %ebp

movl jour, %eax

Vérifier st jour valide (1-7)
cmpl $1, %eax

jl invalide

cmpl $7, Y%eax

jg invalide

Vérifier st weekend (6 ou 7)
cmpl $6, %eax
jge weekend

Sinon c'est un jour de travail
movl $1, %eax
jmp fin

weekend:
movl $0, Y%eax
jmp fin

invalide:
movl $-1, Yeax

fin:
ret

3.2 Calculatrice simple

Ecrire un programme qui effectue une opération selon un code opération :
— 1 : addition

— 2 : soustraction

— 3 : multiplication

— Autre : retourner 0

Données :
.data
operation: .int 3 # multiplication
operandel: .int 7
operande2: .int 6

Solution :

.data

operation: .int 3
operandel: .int 7
operande2: .int 6

.text
.global main
main:
movl %esp, %ebp

movl operation, %ecx
movl operandel, %eax
mov]l operande2, %ebx

cmpl $1, %ecx

je addition

cmpl $2, %ecx

je soustraction
cmpl $3, %ecx

je multiplication

Opération invalide
xorl %eax, %heax
jmp fin

addition:
addl %ebx, %eax
jmp fin

soustraction:
subl %ebx, %eax
jmp fin
multiplication:
imull %ebx, %eax

jmp fin

fin:
ret # eax = 42 (7 * 6)

3.3 Table de sauts

Réécrire la calculatrice précédente en utilisant une table de sauts.

Solution :

.data

operation: .int 2 # soustraction
operandel: .int 15

operande2: .int 8

Table de sauts

jump_table:
.long operation_invalide # cas 0
.long addition # cas 1
.long soustraction # cas 2
.long multiplication # cas 3

.text
.global main
main:
movl %esp, %ebp

movl operation, %ecx
movl operandel, %eax
movl operande2, %ebx

Vérifier st opération wvalide (1-3)
cmpl $1, %ecx

j1 operation_invalide

cmpl $3, %ecx

jg operation_invalide

Uttliser la table de sauts
jmp *jump_table(,%ecx,4) # sauter a l'adresse jump_table[ecz]

addition:
addl %ebx, %eax
jmp fin

soustraction:
subl %ebx, %eax
jmp fin

multiplication:
imull %ebx, ‘%eax
jmp fin

operation_invalide:
xorl %eax, %eax

fin:
ret # eax = 7 (15 - 8)

Exercice 4 : Exercices de synthése

4.1 Somme des nombres pairs

Ecrire un programme qui calcule la somme de tous les nombres pairs de 1 a N.
Données :

.data
n: .int 20

Résultat attendu : 2-+4+6+8+10+12+14+16+18+20 = 110

4.2 Nombre de chiffres

Ecrire un programme qui compte le nombre de chiffres dans un nombre.
Exemple : 12345 a 5 chiffres
Données :

.data
nombre: .int 12345

Astuce : Diviser successivement par 10 jusqu’a ce que le nombre soit 0.

10

4.3 Somme des chiffres

Ecrire un programme qui calcule la somme des chiffres d’un nombre.
Exemple : 1234 — 1+2+43+4 = 10
Données :

.data
nombre: .int 1234

Solution :

.data
nombre: .int 1234
dix: .int 10

.text
.global main
main:
movl %esp, %ebp

movl nombre, Y%ebx # nombre a traiter

xorl Y%edi, %edi # somme = 0
boucle:
cmpl $0, %ebx # st mombre = 0, terminé

je fin_boucle

Extraire le dernier chiffre
xorl %edx, %edx
movl %ebx, %eax

divl dix # eax = mombre/10, edx = mombrel10
addl %edx, %edi # ajouter le chiffre a la somme
movl %eax, %hebx # nombre = nombre/10

jmp boucle

fin_boucle:
movl %edi, %eax # résultat dans eax
ret # eax = 10

4.4 Inverser un nombre

Ecrire un programme qui inverse les chiffres d’un nombre.
Exemple : 1234 — 4321
Données :

.data
nombre: .int 1234

Solution :

.data
nombre: .int 1234
dix: .int 10

.text
.global main
main:
movl %esp, %ebp

11

movl nombre, %ebx # mombre 4 inverser

xorl %edi, %edi # résultat = 0
boucle:
cmpl $0, %ebx # si mombre = 0, terminé

je fin_boucle

Extraire le dernier chiffre

xorl %edx, Y%edx

movl %ebx, %heax

divl dix # eaxr = nombre/10, edx = chiffre

Ajouter le chiffre au résultat

imull dix, %edi # résultat *= 10

addl %edx, %edi # résultat += chiffre
movl %eax, %ebx # nombre = nombre/10
jmp boucle

fin_boucle:
movl %edi, %eax # résultat dans eazx
ret # eax = 4321

4.5 Nombre de bits a 1

Ecrire un programme qui compte le nombre de bits a 1 dans un nombre.
Exemple : 13 = 0b1101 — 3 bits a4 1

Données :
.data
nombre: .int 13

Astuce : Utiliser un décalage a droite et tester le bit de poids faible.

Solution :

.data
nombre: .int 13

.text
.global main
main:
movl %esp, %ebp

movl nombre, %ebx # nombre a tratter

xorl %ecx, hecx # compteur = 0
boucle:
cmpl $0, Y%ebx # st mombre = 0, terminé

je fin_boucle

Tester le bit de poids faible
movl %ebx, %eax

andl $1, %eax # isoler le bit de poids fatble
addl %eax, %ecx # ajouter au compteur

shrl $1, %ebx # décalage a droite de 1 bit
jmp boucle

fin_boucle:
movl %ecx, %eax # résultat dans eax

12

ret # eax = 3

Exercice 5 : Défis

5.1 Nombre parfait

Un nombre parfait est un nombre égal a la somme de ses diviseurs (excluant lui-méme). Exemple : 6 = 1 +
2+ 3
Ecrire un programme qui teste si un nombre est parfait. Retourner 1 si oui, 0 si non.

5.2 Suite de Fibonacci

Ecrire un programme qui calcule le n-iéme terme de la suite de Fibonacci.
Rappel : F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2)
Exemple : F(8) = 21

Solution :

.data
n: .int 8

.text
.global main
main:
movl %esp, %ebp

movl n, %ecx # ecx = n

Cas de base
cmpl $0, %ecx
je cas_zero
cmpl $1, %ecx
je cas_un

Calculer Fibonacct

movl $0, %ebx # F(n-2) =0
movl $1, Yeax # F(n-1) = 1
movl $2, %edi # compteur = 2
boucle:
cmpl Y%ecx, %edi # st compteur > n, terminé
jg fin_boucle
movl jeax, %edx # sauvegarder F(n-1)
addl %ebx, %eax # F(n) = F(n-1) + F(n-2)
movl %edx, ‘%ebx # F(n-2) = ancien F(n-1)

incl %edi

jmp boucle
cas_zero:
xorl %eax, %eax
jmp fin
cas_un:
movl $1, %eax
jmp fin

fin_boucle:

13

fin:
ret # eax = 21

5.3 Conversion binaire vers décimal

Ecrire un programme qui convertit un nombre stocké comme une suite de bits (0 et 1) en décimal.
Exemple : Si on stocke les bits 1, 0, 1, 1 (représentant 0b1011), le résultat doit étre 11.

14

